Головна
Українська Радянська Енциклопедія
Енциклопедичний словник-довідник з туризму
Юридична енциклопедія - Шемшученко Ю.С.
 
Головна arrow Українська Радянська Енциклопедія arrow плюш-подол arrow ПОВЕРХОНЬ ТЕОРІЯ
   

ПОВЕРХОНЬ ТЕОРІЯ

— розділ диференціальної геометрії, в якому вивчаються властивості поверхонь, що не змінюються при рухах у просторі чи при інших перетвореннях, які належать певній групі (напр., групі афінних або проективних перетворень). Складовими частинами П. т. є внутрішня геометрія та зовнішня геометрія поверхні. Регулярна поверхня в П. т. описується першою та другою основними квадратичними формами, нормальними перерізами та їхніми кривинами, середньою кривиною та повною кривиною поверхні. Точки поверхні класифікуються на еліптичні, гіперболічні та параболічні; з метою дослідження властивостей поверхні в околі цих точок вивчаються характерні лінії на поверхні: лінії кривини (напрями яких у кожній точці є головними), асимптотичні (нормальна кривина яких у кожній точці дорівнює нулеві) та геодезичні лінії; залежно від способу утворення та від локальних властивостей виділяються і досліджуються різні типи поверхонь. В П. т. визначаються ізометричне (при якому не змінюються довжини відповідних ліній), конформне (див. Конформне відображення) та ін. відображення поверхонь одна на одну, будується теорія мереж на поверхнях. Велике значення в П. т. мають проблема ізометричного занурення, тобто існування поверхні з заданою внутр. метрикою, і проблема згинання, тобто деформації поверхні, що не змінює довжини будь-яких кривих на ній. Вивчаються поверхні в багатовимірних евклідових і неевклідових просторах, розглядаються неголономні поверхні (які характеризують рух тіла під дією кінематичних в'язей механічних). Ідеї та методи П. т. широко застосовуються в ін. розділах математики, а також у механіці й фізиці. Основи П. т. закладені в працях К. Ф. Гаусса, Г. Монжа і Л. Ейлера. Великий внесок у її розвиток зробили франц. математики Ж. Б. М. Ш. Меньє (1754—93) та О. Бонне (1819—92), італ. математики Д. Кодацці (1824—72) та Г. Майнарді (1800—79), рос. математик К. М. Петерсон (1828—81), рад., в т. ч. українські, математики О. Д. Александров, Д. Ф. Єгоров, М. В. Єфімов, О. В. Погорєлов, В. В. Вагнер (н. 1908), Я. С. Дуб-нов (1887—1957), В. Ф. Каган

(1869—1953), П. К. Рашевський (н. 1907), Є. П. Фініков (1883— 1964) та ін.

Літ.: Каган В. Ф. Основы теории поверхностей в тензорном изложении,

4. 1—2. М., 1947—48; Александров А. Д. Внутренняя геометрия выпуклых поверхностей. М. — Л., І948: Рашевский П. К. Курс дифференциальной геометрии. М., 1956; Погорелов А. В. Внешняя геометрия выпуклых поверхностей. М., 1969; Погорелов А. В. Дифференциальная геометрия. М., 1969.

Ю. А. Амінов.

 

Схожі за змістом слова та фрази